|
Barisan dan Deret Geometri |
Senin, 16 Juni 2008 |
BARISAN GEOMETRI
U1, U2, U3, ......., Un-1, Un disebut barisan geometri, jika
U1/U2 = U3/U2 = .... = Un / Un-1 = konstanta
Konstanta ini disebut pembanding / rasio (r)
Rasio r = Un / Un-1
Suku ke-n barisan geometri
a, ar, ar² , .......arn-1 U1, U2, U3,......,Un
Suku ke n Un = arn-1 ® fungsi eksponen (dalam n)
DERET GEOMETRI
a + ar² + ....... + arn-1 disebut deret geometri a = suku awal r = rasio n = banyak suku
Jumlah n suku
Sn = a(rn-1)/r-1 , jika r>1 = a(1-rn)/1-r , jika r<1 ® Fungsi eksponen (dalam n)
Keterangan:
Rasio antara dua suku yang berurutan adalah tetap Barisan geometri akan naik, jika untuk setiap n berlaku Un > Un-1 Barisan geometri akan turun, jika untuk setiap n berlaku Un < Un-1
Bergantian naik turun, jika r < 0
Berlaku hubungan Un = Sn - Sn-1 Jika banyaknya suku ganjil, maka suku tengah _______ __________ Ut = Ö U1xUn = Ö U2 X Un-1 dst.
Jika tiga bilangan membentuk suatu barisan geometri, maka untuk memudahkan perhitungan, misalkan bilangan-bilangan itu adalah a/r, a, ar
DERET GEOMETRI TAK BERHINGGA
Deret Geometri tak berhingga adalah penjumlahan dari
U1 + U2 + U3 + ..............................
¥ å Un = a + ar + ar² ......................... n=1
dimana n ® ¥ dan -1 < r < 1 sehingga rn ® 0
Dengan menggunakan rumus jumlah deret geometri didapat :
Jumlah tak berhingga S¥ = a/(1-r)
Deret geometri tak berhingga akan konvergen (mempunyai jumlah) untuk -1 < r < 1
Catatan:
a + ar + ar2 + ar3 + ar4 + .................
Jumlah suku-suku pada kedudukan ganjil
a+ar2 +ar4+ ....... Sganjil = a / (1-r²)
Jumlah suku-suku pada kedudukan genap
a + ar3 + ar5 + ...... Sgenap = ar / 1 -r²
Didapat hubungan : Sgenap / Sganjil = r
PENGGUNAAN
Perhitungan BUNGA TUNGGAL (Bunga dihitung berdasarkan modal awal)
M0, M1, M2, ............., Mn
M1 = M0 + P/100 (1) M0 = {1+P/100(1)}M0
M2 = M0 + P/100 (2) M0 = {1+P/100(2)} M0
. . . .
Mn =M0 + P/100 (n) M0 ® Mn = {1 + P/100 (n) } M0
Perhitungan BUNGA MAJEMUK (Bunga dihitung berdasarkan modal terakhir)
M0, M1, M2, .........., Mn
M1 = M0 + P/100 . M0 = (1 + P/100) M0
M2 = (1+P/100) M0 + P/100 (1 + P/100) M0 = (1 + P/100)(1+P/100)M0 = (1 + P/100)² M0 . . .
Mn = {1 + P/100}n M0
Keterangan :
M0 = Modal awal Mn = Modal setelah n periode p = Persen per periode atau suku bunga n = Banyaknya periode
Catatan:
Rumus bunga majemuk dapat juga dipakai untuk masalah pertumbuhan tanaman, perkembangan bakteri (p > 0) dan juga untuk masalah penyusutan mesin, peluruhan bahan radio aktif (p < 0). |
posted by Theraphi Otak Dengan Matematika @ 00.38  |
|
|
|
Tentang Saya |

Name:Niko Hariyadi
Home: Bandar Lampoeng
About Me: Seorang Siswa SMK N 5 Bandar Lampung
See my complete profile
|
Menu |
|
Archives |
|
Links |
|
Blog Friend's |
|
Powered by |
 |
|