|
PERSAMAAN LOGARITMA |
Jumat, 13 Juni 2008 |
alog f(x) = alog g(x) ® f(x) = g(x)
alog f(x) = b ® f(x) =ab
f(x)log a = b ® (f(x))b = a
Dengan syarat x yang didapat dari persamaan tersebut harus terdefinisi. (Bilangan pokok > 0 ¹ 1 dan numerus > 0 )
Contoh: Tentukan nilai x yang memenuhi persamaan berikut ! x log 1/100 = -1/8 x-1/8 = 10-2 (x -1/8) -8 = (10-2)-8 x = 10 16
xlog 81 - 2 xlog 27 + xlog 9 + 1/2 xlog 729 = 6 xlog 34 - 2 xlog33 + xlog² + 1/2 xlog 36 = 6 4 xlog3 - 6 xlog3 + 2 xlog3 + 3 xlog 3 = 6 3 xlog 3 = 6 xlog 3 = 2 x² = 3 ® x = Ö3 (x>0)
xlog (x+12) - 3 xlog4 + 1 = 0 xlog(x+12) - xlog 4³ = -1 xlog ((x+12)/4³) = -1 (x+12)/4³ = 1/x x² + 12x - 64 = 0 (x + 16)(x - 4) = 0 x = -16 (TM) ; x = 4 ²log²x - 2 ²logx - 3 = 0
misal : ²log x = p p² - 2p - 3 = 0 (p-3)(p+1) = 0 p1 = 3 ²log x = 3 x1 = 2³ = 8 p2 = -1²log x = -1 x2 = 2-1 = 1/2
Bilangan pokok a > 0 ¹ 1 |
posted by Theraphi Otak Dengan Matematika @ 22.31  |
|
|
|
Tentang Saya |

Name:Niko Hariyadi
Home: Bandar Lampoeng
About Me: Seorang Siswa SMK N 5 Bandar Lampung
See my complete profile
|
Menu |
|
Archives |
|
Links |
|
Blog Friend's |
|
Powered by |
 |
|